A confidence framework for fish detection through environmental DNA metabarcoding:

Achieving confidence in absence

Nathan P. Griffiths
Bernd Hänfling | Rosalind M. Wright | Marco Cattaneo | James Macarthur | Sara Peixoto | Jonathan D. Bolland

UNIVERSITY OF HULL

Hull International
Fisheries Institute

Institute of Molecular and Clinical Ophthalmology Basel

University of Basel

Environmental DNA

- As species interact with the environment, DNA is shed.
- This DNA is referred to as Environmental DNA (eDNA).
- eDNA can be sampled, to identify species present in the watercourse.

eDNA metabarcoding workflow

Aims

- Optimise eDNA methods to determine species composition in heavily managed catchments.
- Apply this method as a tool to enable targeted management.

End goal
 Integrate eDNA based monitoring into prioritisation frameworks

This method has already proven effective in highly managed catchments in the UK

Species Richness

$>$ Species richness was higher for $16 / 17$ sites when using eDNA.
> Average species richness across the catchment was significantly higher when using eDNA methods.

Species Site Occupancy

$>$ eDNA site occupancy was \geq traditional methods for $22 / 25$ fish species detected across all surveys.
> Catchment wide occupancy was significantly higher when using eDNA methods.

Prioritising fish pass solutions

- There are over 900 water pumping stations in England alone.
- Lots of innovative solutions to fish passage in development.
- We need informed prioritisation to make use of limited resources!

Priority species

- Specific legislation means some species take high priority.
- For these, a 'false negative' would be in breach of policy.
> To enable targeted management, we must be confident of where priority species are present, and absent.

Aims

- Determine the sensitivity of our eDNA metabarcoding workflow.
- Optimise the number of sample and lab replicates required.

End goal

Sampling designs tailor-made to suit end-user requirements.

eDNA metabarcoding workflow

Levels of replication

Pizza analogy

(a) Site:

No olives?
(false negative)
(b) Samples:

(c) Lab replicates:

Pizza analogy

(a) Site:

(b) Samples:

(c) Lab replicates:
olives \checkmark

Our Study

> Field replication -44 sites each with 10x samples processed
> Lab replication - 10x samples obtained at a site each underwent 10x PCR replicates

Results

- We confirmed eel presence at 17 / 44 of our study sites.
- But... does this mean we can be confident the remaining 27 should be classified as absent for eels?

Our model

a = probability of occupancy at a site
b = conditional probability of DNA presence in a sample given occupancy at the site
c = conditional probability of DNA detection in a replicate given presence in the sample

If \mathbf{n} samples are taken, with \mathbf{m} PCR replicates, and no eels are detected, then the probability of absence is: (1-a)/(1-a+a*(1-b+b*(1-c)^m)^n)

When we apply this to eels:
a = 38.7\%
b $=86.8 \%$
c = 25.7\%

Confidence of absence for Eels

	1 sample	2 samples	3 samples	4 samples	5 samples	6 samples	7 samples	8 samples	9 samples	10 samples
1 replicate	0.67	0.72	0.77	0.81	0.85	0.88	0.90	0.92	0.94	0.95
2 replicates	0.72	0.81	0.87	0.92	0.95	0.97	0.98	0.99	0.99	1.00
3 replicates	0.76	0.87	0.93	0.97	0.98	0.99	1.00	1.00	1.00	1.00
4 replicates	0.80	0.91	0.96	0.98	0.99	1.00	1.00	1.00	1.00	1.00
5 replicates	0.83	0.94	0.98	0.99	1.0	1.00	1.00	1.00	1.00	1.00
6 replicates	0.85	0.95	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7 replicates	0.87	0.96	0.99		1.00	1.00	1.00	1.00	1.00	1.00
8 replicates	0.88	0.97	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
9 replicates	0.89	0.98		1.00	1.00	1.00	1.00	1.00	1.00	1.00
10 replicates	0.90	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11 replicates	0.91	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
12 replicates	0.91	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
13 replicates	0.91	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
14 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
15 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
16 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
17 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
18 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
19 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20 replicates	0.92	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

$a=38.7 \%$
$b=86.8 \%$
$c=25.7 \%$
<95\% confidence
>95\% confidence
>99\% confidence

Cobitis taenia (Spined loach)

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}\hline & \text { S1 } & \text { S2 } & \text { S3 } & \text { S4 } & \text { S5 } & \text { S6 } & \text { S7 } & \text { S8 } & \text { S9 } & \text { S10 } \\ \hline \text { R1 } & 0.80 & 0.82 & 0.85 & 0.87 & 0.89 & 0 & 0 & 0 & 0 & 0\end{array}\right)$ | R1 | 0.80 | 0.82 | 0.85 | 0.87 | 0.89 | 0.90 | 0.92 | 0.93 | 0.94 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R2 | 0.92 | 0.97 | 0 | 90 | 0.92 | 0.95 | 0 | 96 | 0 |

R3	0.85	0.90	0.94	0.96	0.98	0.99	0.99	0.99	1.00	1.00																				
R4	0.87	0.93	0.96	0.98	0.99	0.99	1.00	1.00	1.00	1.00		R4	0.87	0.93	0.96	0.98	0.99	0.99	1.00	1.00	1.00	1.00								
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																			
R5	0.89	0.95	0.98	0.9	1.00	1.00	1.00	1.00	1.00	1.00		R5	0.89	0.95	0.98	0.9	1.00	.00	1.00	1.00	1.00	1.00								
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																				
R6	0.90	0.96	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00		R6	0.90	0.96	0.99	0.99	1.00	1.00	1.00	1.00	1.00									
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		R7	0.92	0.97	0.99	1.00	1.00	1.00	1.00	1.00	1.00										
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																					
1.00																														
R8	0.93	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00																					
1.00											R8	0.93	0.98	0.51 .00	1.00	1.00	1.00	1.00	1.00	1.00										
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		R10	0.95	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		R11	0.95	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00									
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																			

 | R14 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{lllllllllllll}\text { R16 } & 0.98 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$

R17	0.98	1.00	1.00	1.0	1.00	1.00	1.00	1.00	1.00	1.00
R18	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

 $\begin{array}{llllllllllllllllllllll}R 20 & 0.99 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$

Esox lucius (Pike)

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10												
R1	0.50	0.71	0.85	0.93	0.97	0.99	0.99	1.00	1.00	1.00		$\mathbf{R 1}$	0.50	0.71	0.85	0.93	0.97	0.99	0.99	1.00	1.00	1.00
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---											
$\mathbf{R 2}$	0.71	0.93	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00												

Rutilus rutilus (Roach)

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10												
R1	0.50	0.68	0.82	0.91	0.95	0.98	0.99	1.00	1.00	1.00		R1	0.50	0.68	0.82	0.91	0.95	0.98	0.99	1.00	1.00	1.00
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---							

R3	0.70	0.92	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00

 \begin{tabular}{l|llllllllll}
R5 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \&).00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R6 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hlineR \& 0.75 \& 0.95 \& 0.9 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.0 \& 1.00

\hline

\hline R7 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline$R 8$ \& 0.75 \& 0.95 \& 0.9 \& 1.0 \& 1.0 \& 1.0 \& 1.0 \& 1.00 \& 1.0 \& 1.0

\hline

\hline R8 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R9 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R10 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

1.00

\hline

\hline R10 \& 0.75 \& 0.95 \& 0.95 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline R11 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R12 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R13 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline
\end{tabular}

 $\begin{array}{llllllllllllll}\text { R15 } & 0.75 & 0.95 & 0.99 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$ \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline R16 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R17 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R18 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

R19 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R20 \& 0.75 \& 0.95 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline
\end{tabular}

Gasterosteus aculeatus (3-Spine stickleback)

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
R1	0.33	0.6	0.5	0.71	0.8	0.88	0.92	0.9	0.97	0.98

R1
$R 2$

0.33
:---

| R3 | 0.59 | 0.88 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Scardinius erythrophthalmus (Rudd)

	S1	S2	S3	S4	S5	S6	S7	S8	S9												
R1	0.87	0.95	S10								R1	0.87	0.95	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---									
$\mathbf{R 2}$	0.90	0.97	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	R3										

 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline R5 \& 0.90 \& 0.9 \& 0.99 \& 1.0 \& 1.00 \& .00 \& 1.00 \& 1.00 \& 1.00

\hline R6 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline$R 7$ \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hlineR \& 0.9 \& 0.9 \& 0.9 \& .0 \& 1.0 \& 1.00 \& 1.00 \& 1.0 \& 1.00 \& 1.00

\hline
\end{tabular}

 \begin{tabular}{l|llllllllllll}
R9 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R10 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R11 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

 .00

\hline R12 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

R13 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

R14 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R15 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R16 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

1.00

\hline

R17 \& 0.90 \& 0.97 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline
\end{tabular}

 R19 0.900 .970 .991 .001 .001 .001 .001 .001 .001 .00 | R20 | 0.90 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| :--- |

Pungitius pungitius (9-Spine stickleback)

| S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | S10

R1

S1	S2	S3	S4	S5	S6	S7	S8	S9
0.30	S10							

| $R 2$ | 0.41 | 0.69 | 0.88 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | R4 | R. 11 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R5 | 0.81 | 0.98 | 1.00 | 1.00 | 1.00 | .00 | 1.00 | 1.00 | 1.00 | 1.00 |
| $R 6$ | 0.88 | 0.9 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0 |

 \begin{tabular}{|l|llllllllll|l|}
\hline R8 \& 0.95 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hlineR \& 0.9 \& 1.00 \& 1.0 \& 1.00 \& 1.0 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R9 \& 0.97 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

R10 \& 0.98 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

R11 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R12 \& 0.99 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R13 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline$R 14$ \& 1.0 \& 1.00 \& 1.00 \& 1.00 \& 1.0 \& 1.00 \& 100 \& 1.0 \& 1.00 \& 1.00

\hline
\end{tabular}

 \begin{tabular}{ll|lll|lll|lll|l|}
\hline R15 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline

\hline R16 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00 \& 1.00

\hline
\end{tabular} $\begin{array}{llllllllllllll}\text { R17 } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$

R1	1.00	1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
R20	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Site categorization

Jaccard index (PERMANOVA, R2 $=0.08, D F=1, P=0.001$)
Bray-Curtis (PERMANOVA, R2 $=0.11, \mathrm{DF}=1, \mathrm{P}=0.001$)

Conclusions

$>$ We developed a model which allows assessment of the 'confidence in absence' of priority species.
$>A>99 \%$ certainty that 27 of our sites were eel negative.
$>$ Can be applied to inform cost-benefit analysis and survey designs of future work (Confidence, Lab \& Field resources).

