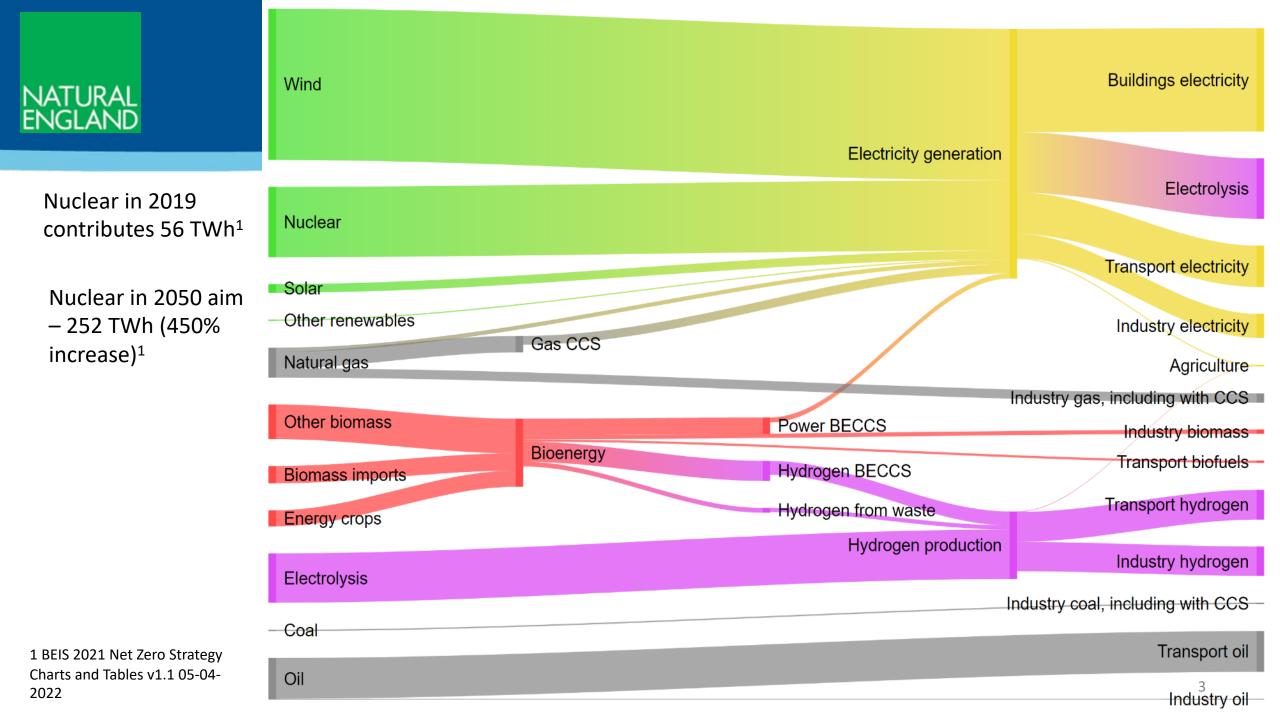
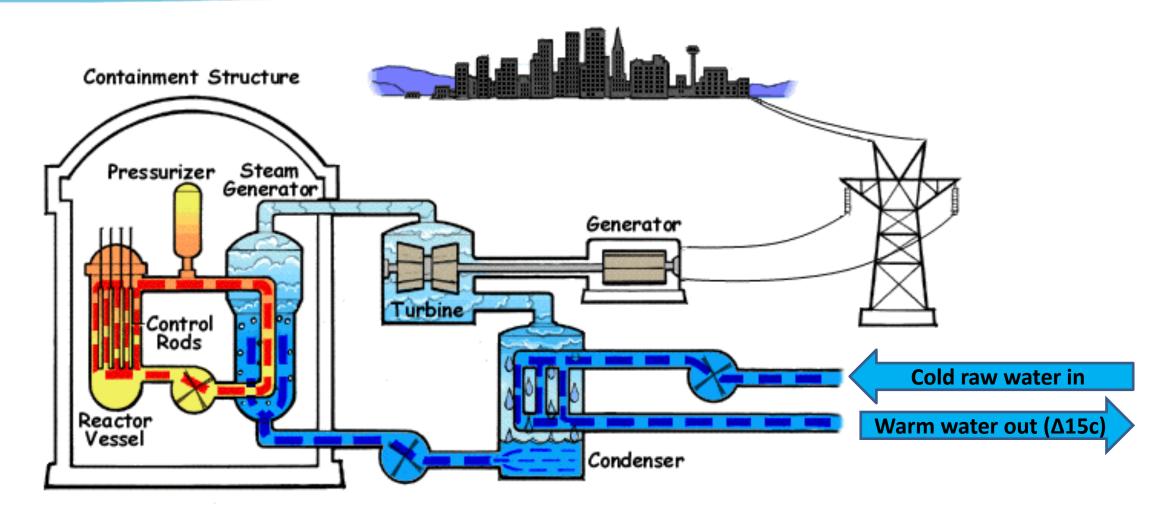
Powerstation fish impingement © Pisces Conservation Ltd, 1995 - 2023


Can direct cooling still be considered the Best Available Technology for large estuarine and coastal applications in the U.K.?

Adam Waugh Natural England



Overview

- Why do we need nuclear? •
- Direct cooling advantages and mitigation methods ٠
- What are the risks to hearing fishes? ٠
- Viable compensation strategies •
- Are there any alternatives? ٠

NATURAL ENGLAND NUCLEAR power generation thermal efficiency

Benefits of direct cooling on thermal efficiency

		Cooling towers					
	Direct cooling			Natural draught (dry)*			
Generation efficiency			efficient than	Lowest efficiency 2 - 3% less efficient than direct cooling			
Water abstraction	High	Moderate/low	Moderate/low	None			
Visual impact	Occasional foam or 'slick' at outfall	High	Moderate	High			

Adapted from table 7.2 Environment Agency, 2010. SC070015 Cooling report

Authors: Turnpenny, A.W.H., Coughlan, J., Ng, B., Crews, P., Bamber, R.N., Rowles, P.. Cooling Water Options for the New Generation of Nuclear Power Stations in the UK

5

Current 'guidance'

Environment Agency, 2010. SC070015 Cooling report Authors: Turnpenny, A.W.H., Coughlan, J., Ng, B., Crews, P., Bamber, R.N., Rowles, P.. Cooling Water Options for the New Generation of Nuclear Power Stations in the UK

"... direct cooling can be BAT [Best Available Technology] for estuarine and coastal sites, provided that best practice in planning, design, mitigation and compensation are followed."

Cooling Water Options for the New Generation of Nuclear Power Stations in the UK

SC070015/SR3

Popular mitigation methods

Low velocity intakes – size required for adequate cooling

Acoustic fish deterrent – installation and maintenance

Fish return & recovery systems

EA HPC predicted annual impact without AFD -NATURAL ENGLAND Migratory Assemblage Species

	A	В	С	D	E	F	G	н				
		No. of fish lost due	equivalent equivale	No. of equivalent adults lost		of equivalent adults lost due to HPC	Relevant Population SSB (t)/ Fishery (t)/ <u>number of</u> <u>fish</u>	Annual proportional loss from the relevant population due to HPC Entrapment				
Species	due to HPC Impingement	to HPC Entrainment	due to HPC Impingement	due to HPC Entrainment	due to HPC Entrapment			Predicted value results	Ur 1 st %ile	ncertainty 5 th %ile	range resu 95 th %ile	lts 99 th %ile
Twaite shad	763 (fish)	-	117		117		<u>86,696</u>	0.1%	0.04%	0.06%	0.65%	1.1%
Allis shad	23 (fish)	-	9		9	-	<u>1,083</u>	0.9%	0.27%	0.37%	4.7%	8.1%
Sea lamprey	50 (fish)	-	50	-	50	-	<u>15,269</u>	0.3%	0.09%	0.12%	0.54%	0.73%
River lamprey	20 (fish)	-	20	-	20	-	<u>116,109</u>	0.02%	0.01%	0.015%	0.03%	0.04%
Atlantic salmon	76 (fish)	-	17	-	17	-	<u>17,616</u>	0.1%	0.0004%	0.01%	0.45%	1.6%
Sea trout	8 (fish)	-	8	-	8	-	<u>8,750</u>	0.1%	0.02%	0.03%	0.26%	<mark>0.4%</mark>

Hinkley Point C – Environmental Permit variation – EPR/HP3228XT/V004 – APP/EPR/573 <u>Table 3 CD 8.20 TB020 - Summary Technical Brief</u> <u>Summary of Quantitative Impact Assessment Results. Draft-06.pdf</u>

EA HPC predicted annual impact without AFD -NATURAL ENGLAND Marine Assemblage Species

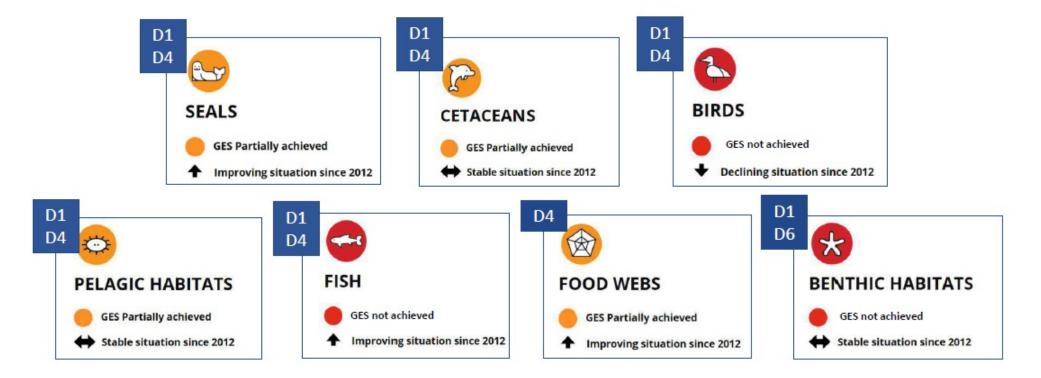
	A	В	С	D	E	F	G	Н				
Species d	No. of fish lost	sh lost HPC ment No. of fish lost HPC Mue to HPC Impingement No. of No. of equivalent adults lost Impingement No. of No. of equivalent adults lost No. of equivalent adults lost No. of equivalent Adults lost Impingement No. of Popula Compingement No. of Popula Compingement No. of Popula Compingement No. of Popula Compingement No. of Popula Compingement No. of Popula Compingement No. of Compingement No. of Compingement No. of Compingement No. of Compingement No. of Compingement Compingement No. of Compingement Compingemen	equivalent adults lost due to HPC	equivalent adults lost due to HPC	equivalent adults lost due to HPC	Tonnes of equivalent adults lost	Relevant Population SSB (t)/ Fishery (t)/	Annual proportional loss from the relevant population due to HPC Entrapment				
	due to HPC Impingement							Predicted	Uncertainty range results			
				value results	1 st %ile	5 th %ile	95 th %ile	99 th %ile				
European sprat	1,322,637 (fish) 3,557,152 (larvae)	3,557,152 (larvae)	3,482,256	124,500	3,606,756	55.90	7,704	0.7%	0.47%	0.52%	0.98%	1.1%
Whiting	1,708,720 (fish)	-	662,984	-	662,984	197.57	2,179	9%	3.9%	5.4%	23%	31%
Dover sole	157,565 <mark>(</mark> fish) 324,176 (larvae)	1,106,693 (larvae) 991,212 (eggs)	170,362	0.02	170,362	60.14	809	7%	1.2%	1.8%	11%	15%
Atlantic cod	302,034 (fish)	-	51,648		51,648	245.12	1,118	22%	3.6%	5.4%	36%	52%
Atlantic herring	37,549 <mark>(</mark> fish) 221,128 (larvae)	193,487 (larvae)	114,464	267	114,731	7.46	157	5%	2.9%	3.2%	6.1%	7%
European seabass	23,626 (fish) 13,129,264(larvae)	6,108,346 (larvae) 9,456,586 (eggs)	14,401	0.0001	14,401	16.17	565	3%	1.3%	1.6%	4.7%	5.4%
European plaice	1,446 (fish) 550,129 (larvae)	1,300,201 (larvae)	16,630	15	16,646	5.33	1,332	0.4%	0.02%	0.04%	0.3%	0.4%
Thornback ray	2,358 (fish)	-	1,457	-	1,457	4.78	122	4%	1.8%	2.1%	4.7%	5.5%
Blue whiting	7,375 (fish)	-	2,862	-	2,862	0.39	514,008	0.0001%	0.00002%	0.00003%	0.00015%	0.0002%

Hinkley Point C – Environmental Permit variation – EPR/HP3228XT/V004 – APP/EPR/573

Table 2 CD 8.20 TB020 - Summary Technical Brief_Summary of Quantitative Impact Assessment Results. Draft-06.pdf

🗯 GOV.UK

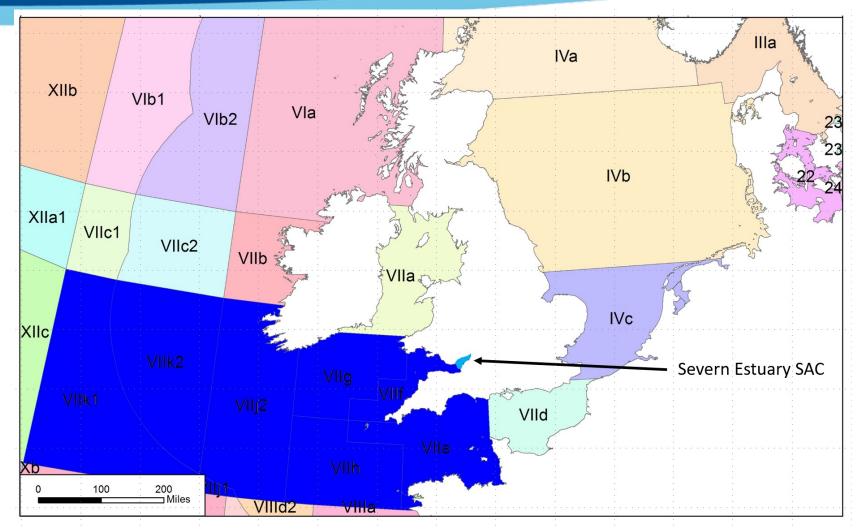
Home > Housing, local and community > Planning and building


Collection Biodiversity net gain

- Biodiversity net gain (BNG) is a strategy to develop land and contribute to the recovery of nature. It is a way of making sure the habitat for wildlife is in a better state than it was before development.
- Broadly speaking, marine net gain aims to put the marine environment into recovery.
- Principle 6: Marine net gain will be a mandatory requirement. It will apply to all marine development, subject to any minimal thresholds and other exemptions

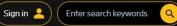
Consultation on the Principles of Marine Net Gain.pdf https://consult.defra.gov.uk/defra-net-gain-consultation-team/consultation-on-the-principles-of-marine-net-gain/supporting_documents

Good Environmental Status Assessment



Defra (2019) Marine Strategy Part One: UK updated assessment and Good Environmental Status

NATURAL ENGLAND


NATURAL
ENGLANDScale of assessing losses for marine fishes

Hinkley Point C – Environmental Permit variation – EPR/HP3228XT/V004 – APP/EPR/573

Adapted from Waugh (2020) TB011 - Scale of assessment areas for marine fishes and assessment method comparing Sprat losses with Spawning Stock Biomass

NewScientist

News Features Newsletters Podcasts Video Comment Culture Crosswords | This week's magazine

Health Space Physics Technology Environment Mind Humans Life Mathematics Chemistry Earth Society

Life

The Atlantic cod may be five separate species rather than one

A genetic analysis of thousands of Atlantic cod has revealed they all belong to one of five distinctive groups, suggesting they aren't interbreeding and belong to different species

By Michael Le Page

💾 3 July 2023

f y 🛛 in 🖨 🗢 🗟

Atlantic cod are officially just one species, Gadus morhua Pix Box/Shutterstock

Atlantic cod are actually five separate species of fish, not one, researchers have claimed after conducting a genetic analysis – though not everyone agrees with their findings.

"What we thought was a single species is actually more species," says <u>Einar Arnason</u> at the University of Iceland. "It's important in terms of biodiversity."

NATURAL ENGLAND Secretary of State view on scale of assessing

"Contrary to the appellant's findings, I have found that the Agency's approach to considering smaller population sizes more reflective of existing and emerging research identifying complexities in population structures and the presence of distinct genetic populations, linked to site fidelity, closely related spawning and feeding areas or natal homing responses.

I do not doubt that the ICES figures, based on long term, accepted approaches to calculating SSBs, can be considered robust when assessing necessary management responses to wider scale impacts, such as fishing, on the broader populations defined.

However, for the purposes of assessing a point source impact, and one that will be effectively continuous with no immediate adaptation responses, this reinforces my concerns that finer scale populations estimates are more reflective of actual effects."

"Consequently, having reviewed the submissions, assessed levels of uncertainty and areas of scientific disagreement, I have concluded that, in absence of an AFD, it cannot be concluded that there would not be adverse effects on the integrity of the Severn Estuary/ Môr Hafren SAC and Ramsar site, the River Usk / Afon Wysg SAC and the River Wye / Afon Gwy SAC.."

Viable compensation strategies

Migratory fishes – barrier removal

Marine and estuarine fishes – direct compensation

Marine and estuarine fishes – indirect compensation through habitat creation

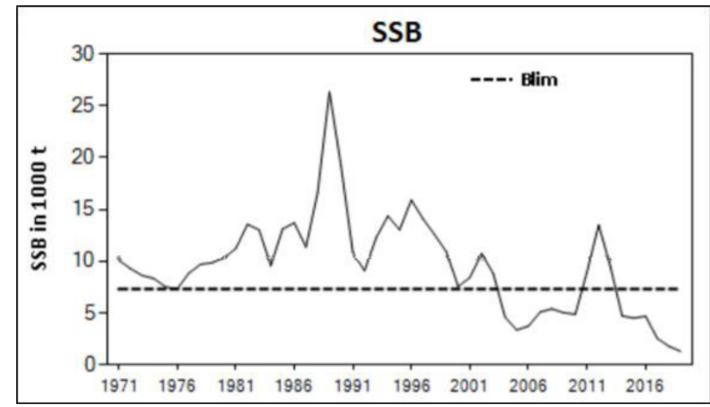
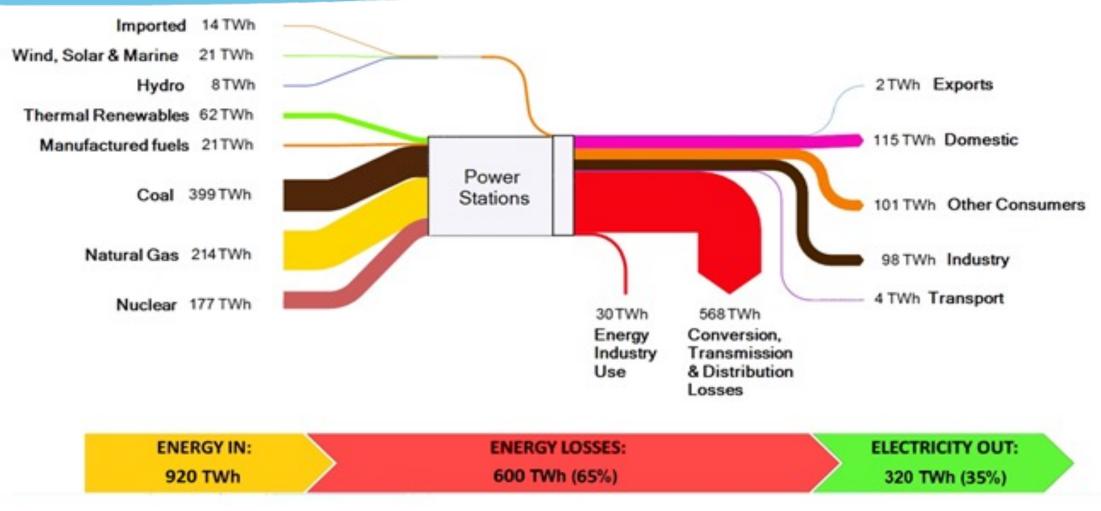
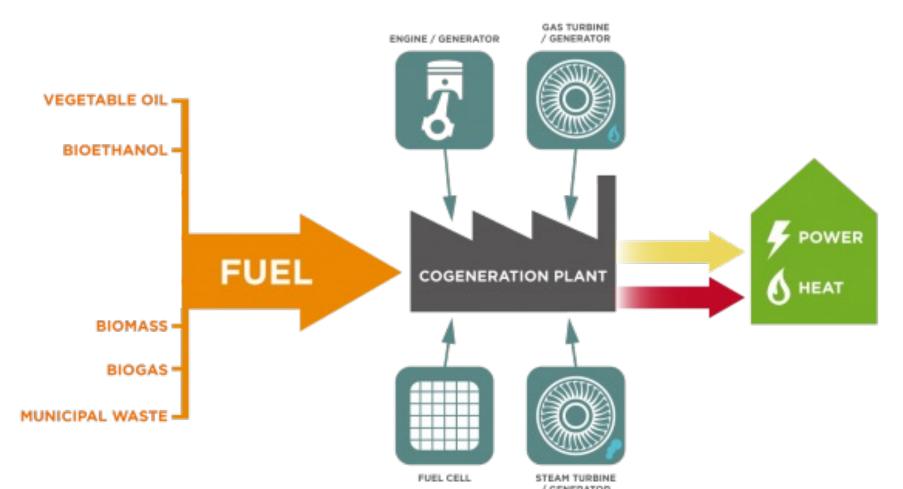



Figure 2 SSB of Atlantic cod in areas VIIe-k, 1970-2019 (adapted from ICES, 2019 CD Ref: 9.60)

Impact of transmission losses



UK energy flows 2012 shown at http://www.green-peninsula.com/2013/09/electricity-generation-efficiency-uk-2012/

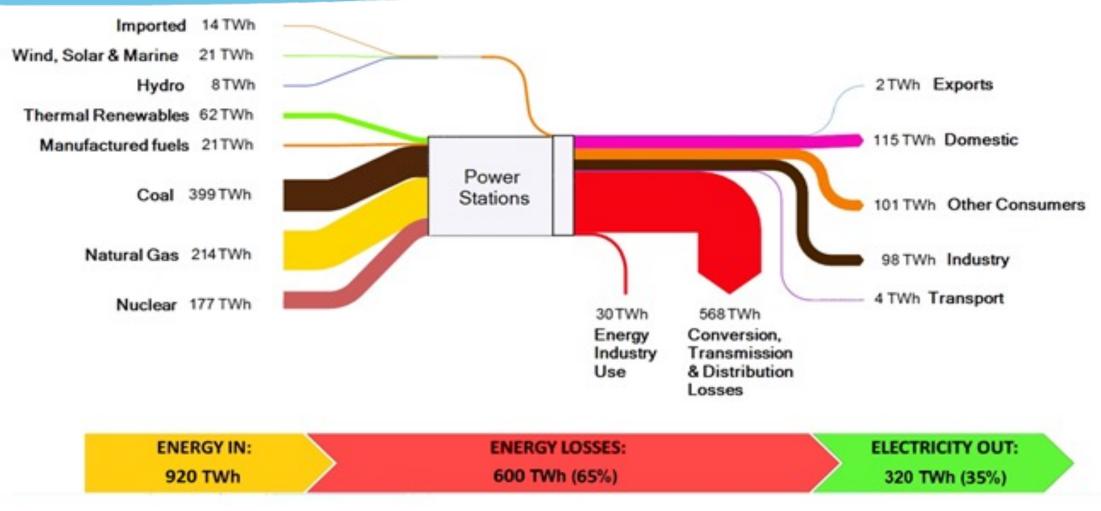
NNB alternatives - cogeneration

The Cogeneration Principle

Adapted from table 7.2 Environment Agency, 2010. SC070015 e Authors: Turnpenny, A.W.H., Coughlan, J., Ng, B., Crews

Heat NATURAL ENGLAND

NATURAL ENGLAND SMRs/


Alternative cooling methods

		Cooling towers					
	Direct cooling			Natural draught (dry)*			
Generation efficiency		,,,,,	efficient than	Lowest efficiency 2 - 3% less efficient than direct cooling			
Water abstraction	High	Moderate/low	Moderate/low	None			
Visual impact	Occasional foam or 'slick' at outfall	High	Moderate	High			

Adapted from table 7.2 Environment Agency, 2010. SC070015 Cooling report

Authors: Turnpenny, A.W.H., Coughlan, J., Ng, B., Crews, P., Bamber, R.N., Rowles, P.. Cooling Water Options for the New Generation of Nuclear Power Stations in the UK ²²

Impact of transmission losses

UK energy flows 2012 shown at http://www.green-peninsula.com/2013/09/electricity-generation-efficiency-uk-2012/

Summary

- Net zero by 2050
- "... direct cooling can be BAT [Best Available Technology] for estuarine and coastal sites, provided that best practice in planning, design, <u>mitigation</u> and <u>compensation</u> are followed."
- Net gain/finer scale populations now being recognised
- Alternatives

Thank you!

adam.waugh@naturalengland.org.uk