EPRI Research on Use of Traveling Water Screens for Fish Protection
International Fish Screening Techniques Conference 2011

Dave Bailey and Doug Dixon
Sr. Program Manager
International Fish Screening Techniques Conference
Southampton, UK
March 30, 2010
EPRI History …

• Founded in 1973
• Independent, nonprofit center for public interest energy and environmental research
• 450+ collaborative participants in more than 40 countries
 – EPRI members generate more than 90% of U.S electricity
• Major offices in Palo Alto, CA; Charlotte, NC; Knoxville, TN
 – Laboratories in Knoxville, Charlotte and Lenox, MA

EPRI’s Founder
Chauncey Starr
The U.S. EPA has proposed regulations requiring reduction in impingement and entrainment at cooling water intake structures.

- EPRI, in anticipation of regulations, has been conducting research on closed-cycle cooling and alternative fish protection technologies.

- The focus of this paper is traveling fine mesh screen technologies with fish protection:
 - Alternative traveling screens tend to have a lower cost than exclusion devices
 - Documenting performance is essential to determine viability as a compliance alternative
New Developments for Cooling Water Intake Structures

• U.S. EPA issued proposed regulations for cooling water intake structures on Tuesday of this week:
• All facilities using more than 2 MGD must reduce impingement mortality by:
 – Reducing through screen design velocity to not exceed 0.5 fps or
 – Reducing impingement mortality by 88%
• Facilities using more than 125 MGD subject to entrainment mortality reduction standards on a case by case basis. Must evaluate:
 – Cost, benefits and impacts of closed-cycle cooling
 – Use of alternative fish protection screening (2 mm mesh or smaller) and associated costs, benefits and impacts
• Final Rule expected in July 2012
Scope of EPRI Traveling Screen Research

Laboratory
- Impingement performance
 – Large flume
- Entrainment reduction performance
 – Bench top
 – Large flume
- Fish return system survival

Field
- Beaudry screen testing at OPPD
- Debris handling on Missouri River
Existing U.S. Fine Mesh Installations

- Xcel’s Prairie Island NPS
- AES’s Somerset & Dunkirk
- KCP&L’s Hawthorn
- Topaz’s Barney Davis
- Progress’ Brunswick NPS
- TECO’s Big Bend
Screen Fouling Performance Study
Screen after 9 months operation
Modified Traveling Screens Evaluated

Ristroph

Geiger

Beaudry

Molded Plastic

Geiger

© 2007 Electric Power Research Institute, Inc. All rights reserved.
Prototype Screen Test Facility

Concrete Flume
- 120 ft long (80 ft test section)
- 20 ft wide
- 10 ft deep

Closed-loop Pump System
- Two, 60-inch diameter bow thrusters

Variable Frequency Drives
- Up to 500 cfs (224,000 gpm) flow

Water Quality Maintenance
- Chilling-100 ton chiller
- Particulate filtration- bag filters to 25µm
- UV sterilization

Passavant-Geiger
- 2.0 mm

EIMCO
- 2.0 mm

Hydrolox
- 1.78 mm
Test Species

- **Bigmouth Buffalo**
 Ictiobus cyrinellus

- **Bluegill**
 Lepomis macrochirus

- **Common Carp**
 Cyprinus carpio

- **Golden Shiner**
 Notemigonus crysoleucas

- **White Sucker**
 Catostomus commersonii
EPRI Fine Mesh Traveling Screen Research Projects

1. Larval survival studies with 4 types of screens in laboratory setting
 - 2006-2008: 0.5 mm
 - 2009: 2.0 mm
 - 2010: 2.0 mm Beaudrey vacuum screen

2. Fish return effects on larval/juvenile fish survival

3. Engineering issues to be faced with potential retrofit
Study Design – Prototype Screens

- 100 organisms per replicate
- Handling controls
- Approach velocity
 - 0.5, 1.0, and 1.5 ft/s
- Screen size
 - 2.0 mm
- Fish size

<table>
<thead>
<tr>
<th>Species</th>
<th>Average SL (mm)</th>
<th>Minimum SL (mm)</th>
<th>Maximum SL (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bigmouth Buffalo</td>
<td>18.1</td>
<td>12.4</td>
<td>22.7</td>
</tr>
<tr>
<td>Bluegill</td>
<td>17.6</td>
<td>11.8</td>
<td>25.8</td>
</tr>
<tr>
<td>Common Carp</td>
<td>17.8</td>
<td>8.1</td>
<td>24.8</td>
</tr>
<tr>
<td>Golden Shiner</td>
<td>22.5</td>
<td>15.9</td>
<td>28.8</td>
</tr>
<tr>
<td>White Sucker</td>
<td>13.8</td>
<td>13.0</td>
<td>14.6</td>
</tr>
</tbody>
</table>
Common Carp Survival (2007 vs 2008): 0.5 mm

Improvements in Sample Handling
Common Carp Survival (2009): 2.0 mm

![Graph showing Common Carp survival rates under different treatment velocities. The graph compares survival rates at 0.5 ft/s (Smaller Larvae), 1.0 ft/s, 1.5 ft/s, and Control. The bars indicate higher survival rates for faster velocities.]
Bigmouth Buffalo: 0.5 vs 2.0 mm

Bigmouth Buffalo

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Control
0.5 ft/s - 2.0 min
0.5 ft/s - 4.0 min
1.0 ft/s - 2.0 min

Bigmouth Buffalo

48-Hour Total Survival (%)

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

0.5 ft/s 1.0 ft/s 1.5 ft/s Control
Bigmouth Buffalo: Survival by Length (2.0 mm)
Fish Return Effects
Laboratory Flume Project: Summary Learning to Date (0.5 - 2.0 mm)

- **0.5-1.0 mm** survival poor! Even control mortality high (>50%)
- **2.0 mm** survival increases dramatically (>80%) for test larvae (> 12.0 mm - organism length/stage matters - organisms rapidly gain strength/rigor with growth)
- Species matters (some much more sensitive than others)
- Approach velocity matters (mortality increases with increasing velocity) for larvae smaller >12 mm but less so for larvae >12mm for species tested
- Fish return effects does not appear to be a significant source of added mortality

BUT – results are for relatively hardy test species and not those that dominate actual IM&E
Beaudrey Fine Mesh Vacuum Screen Tested in 2010
Preliminary Beaudrey Performance (2.0 mm)

48-Hr Post-Collection Survival
(week of 9-Aug)

<table>
<thead>
<tr>
<th>Treatment Velocity</th>
<th>Percent Survival (48-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>90.0%</td>
</tr>
<tr>
<td>1.5</td>
<td>80.0%</td>
</tr>
<tr>
<td>2.0</td>
<td>70.0%</td>
</tr>
<tr>
<td>Control</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- Bigmouth Buffalo
- Common Carp
- White Sucker
Preliminary Beaudrey Performance (2.0 mm)

48-Hr Post-Collection Survival (week of 9-Aug and 23-Aug)

Percent Survival (48-hr)

- Bigmouth Buffalo
- Common Carp
- White Sucker

Treatment Velocity

© 2007 Electric Power Research Institute, Inc. All rights reserved.
Preliminary Beaudrey Performance (2.0 mm)
August 9 – September 10

NOTE: There is a fish length effect for increased survival

48-Hr Post-Collection Survival

Percent Survival (48-hr)

Treatment Velocity

High Velocity Testing

- Bigmouth Buffalo
- White Sucker
- Common Carp
- Bluegill
316(b) Symposium at AFS Annual Meeting

September 4-8, Seattle, WA

- Technology developments
- IM&E sampling and magnitude
- AEI analysis
- BTA selection
- Closed cycle cooling issues
- Economic analysis

- www.fisheries.org
Questions?
Questions?

Dave Bailey
dbailey@epri.com
571-226-0614

Doug Dixon
ddixon@epri.com
804-642-1025